Бізнес

Дані для навчання штучного інтелекту: 10-мільярдний бізнес, який живить штучний інтелект

Масштабний ШІ коштує 29 мільярдів доларів, і ви, мабуть, ніколи про нього не чули. Це невидима індустрія навчальних даних, яка робить можливими ChatGPT і Stable Diffusion - ринок обсягом $9,58 млрд із щорічним зростанням на 27,7%. З 2020 року витрати зросли на 4300% (Gemini Ultra: 192 мільйони доларів). Але до 2028 року закінчиться доступний людський публічний текст. Тим часом, судові позови про захист авторських прав і мільйони паспортів, знайдених у наборах даних. Для компаній: ви можете почати безкоштовно з Hugging Face та Google Colab.

Підсумуйте цю статтю за допомогою ШІ

Невидима індустрія, яка робить можливими ChatGPT, Stable Diffusion і всі інші сучасні системи штучного інтелекту

Найкраще збережений секрет штучного інтелекту

Коли ви використовуєте ChatGPT, щоб написати електронного листа або згенерувати зображення в Midjourney, ви рідко замислюєтеся над тим, що стоїть за "магією" штучного інтелекту. Але за кожною розумною відповіддю і кожним згенерованим зображенням стоїть багатомільярдна індустрія, про яку мало хто говорить: ринок даних для навчання ШІ.

Цей сектор, який, за даними MarketsandMarkets, досягне $9,58 млрд до 2029 року з темпами зростання 27,7% на рік, є справжнім двигуном сучасного штучного інтелекту. Але як саме працює цей прихований бізнес?

Невидима екосистема, яка рухає мільярди

Комерційні гіганти

У світі даних для навчання ШІ домінують кілька компаній, про які більшість людей ніколи не чули:

Scale AI, найбільша компанія в галузі з часткою ринку 28%, нещодавно була оцінена в 29 мільярдів доларів після інвестицій Meta. Їхні корпоративні клієнти платять від 100 000 до кількох мільйонів доларів на рік за високоякісні дані.

Компанія Appen, що базується в Австралії, керує глобальною мережею з понад 1 мільйона фахівців у 170 країнах світу, які вручну тегують і курують дані для ШІ. Такі компанії, як Airbnb, John Deere та Procter & Gamble, користуються їхніми послугами для "навчання" своїх ШІ-моделей.

Світ відкритого коду

Паралельно існує екосистема з відкритим вихідним кодом, яку очолюють такі організації, як LAION (Large-scale Artificial Intelligence Open Network), німецька некомерційна організація, яка створила LAION-5B, набір даних з 5,85 мільярдів пар зображення-текст, що уможливило стабільну дифузію.

Common Crawl щомісяця випускає терабайти необроблених веб-даних, які використовуються для навчання GPT-3, LLaMA та багатьох інших мовних моделей.

Приховані витрати штучного інтелекту

Що не відомо широкому загалу, так це те, наскільки дорогим стало навчання сучасної АІ-моделі. За даними Epoch AI, за останні вісім років витрати зростали в 2-3 рази на рік.

Приклади реальних витрат:

Найдивовижніша цифра? За даними AltIndex.com, з 2020 року витрати на навчання ШІ зросли на 4300%.

Етичні та правові проблеми сектору

Питання авторського права

Одне з найбільш суперечливих питань стосується використання матеріалів, захищених авторським правом. У лютому 2025 року суд штату Делавер у справі Thomson Reuters проти ROSS Intelligence постановив, що навчання ШІ може становити пряме порушення авторських прав, відхиливши захист "добросовісного використання".

Управління з авторських прав США опублікувало 108-сторінковий звіт, в якому дійшло висновку, що певні види використання не можна захищати як добросовісне, що відкриває шлях до потенційно величезних витрат на ліцензування для компаній, що займаються ШІ.

Конфіденційність та персональні дані

Дослідження MIT Technology Review показало, що DataComp CommonPool, один з найбільш широко використовуваних наборів даних, містить мільйони зображень паспортів, кредитних карток і свідоцтв про народження. За останні два роки його завантажили понад 2 мільйони разів, що створює величезні проблеми з конфіденційністю.

Майбутнє: дефіцит та інновації

Проблема пікових даних

Експерти прогнозують, що до 2028 року більшість публічного тексту, створеного людиною, буде використовуватися в Інтернеті. Цей сценарій "піку даних" спонукає компанії до пошуку інноваційних рішень:

  • Синтетичні дані: штучна генерація навчальних даних
  • Ліцензійні угоди: Стратегічні партнерства, такі як між OpenAI та Financial Times
  • Мультимодальні дані: поєднання тексту, зображень, аудіо та відео

Незабаром з'являться нові правила

Каліфорнійський закон про прозорість Ш І вимагатиме від компаній розкривати набори даних, які використовуються для навчання, тоді як ЄС впроваджує аналогічні вимоги в Законі про ШІ.

Можливості для італійських компаній

Для компаній, які хочуть розробляти рішення зі штучного інтелекту, розуміння цієї екосистеми має вирішальне значення:

Бюджетні варіанти:

Enterprise Solutions:

  • ШІ та шкали Appen для критично важливих проектів
  • Спеціалізовані сервіси: Наприклад, Nexdata для NLP або FileMarket AI для аудіо даних

Висновки

Ринок даних для навчання ШІ коштує 9,58 мільярда доларів і зростає на 27,7 відсотка щороку. Ця невидима індустрія є не лише рушієм сучасного ШІ, але й однією з найбільших етичних і правових проблем сучасності.

У наступній статті ми розглянемо, як компанії можуть конкретно увійти в цей світ, і надамо практичний посібник для початку розробки рішень зі штучного інтелекту з використанням доступних сьогодні наборів даних та інструментів.

Для тих, хто хоче дізнатися більше зараз, ми підготували детальний посібник з дорожньою картою впровадження, конкретними витратами та повним набором інструментів, який можна завантажити безкоштовно за умови підписки на розсилку newsletter.

Корисні посилання, щоб розпочати роботу негайно:

Технічні джерела:

Не чекайте на "революцію штучного інтелекту". Створіть її. Через місяць у вас може з'явитися перша робоча модель, тоді як інші ще тільки планують.

Ресурси для розвитку бізнесу

9 листопада 2025 року

AI Trends 2025: 6 стратегічних рішень для безперешкодного впровадження штучного інтелекту

87% компаній визнають ШІ конкурентною необхідністю, але багато хто зазнає невдачі в інтеграції - проблема не в технології, а в підході. 73% керівників називають прозорість (Explainable AI) вирішальним фактором для залучення зацікавлених сторін, тоді як успішні впровадження слідують стратегії "починай з малого, думай про велике": цільові високоцінні пілотні проекти, а не тотальна трансформація бізнесу. Реальний кейс: виробнича компанія впроваджує предиктивне технічне обслуговування на основі штучного інтелекту на одній виробничій лінії, досягає зниження простоїв на 67% за 60 днів і каталізує впровадження в масштабах усього підприємства. Перевірені кращі практики: інтеграція через API/проміжне програмне забезпечення замість повної заміни для скорочення часу навчання; виділення 30% ресурсів на управління змінами з рольовим навчанням забезпечує +40% рівня впровадження та +65% задоволеності користувачів; паралельне впровадження для перевірки результатів ШІ в порівнянні з існуючими методами; поступова деградація з резервними системами; щотижневі оглядові цикли протягом перших 90 днів для моніторингу технічної продуктивності, впливу на бізнес, рівня впровадження, рентабельності інвестицій. Успіх вимагає балансу між технічними та людськими факторами: внутрішні чемпіони з ШІ, фокус на практичних вигодах, еволюційна гнучкість.
9 листопада 2025 року

Розробники та штучний інтелект на веб-сайтах: виклики, інструменти та найкращі практики: міжнародна перспектива

Італія застрягла на позначці 8,2% впровадження ШІ (проти 13,5% в середньому по ЄС), тоді як у всьому світі 40% компаній вже використовують ШІ на практиці - і цифри показують, чому цей розрив є фатальним: чат-бот Amtrak генерує 800% рентабельності інвестицій, GrandStay економить $2,1 млн на рік, обробляючи 72% запитів автономно, Telenor збільшує доходи на 15%. У цьому звіті досліджується впровадження ШІ на веб-сайтах на практичних кейсах (Lutech Brain для тендерів, Netflix для рекомендацій, L'Oréal Beauty Gifter з 27-кратним залученням порівняно з електронною поштою) і розглядаються реальні технічні проблеми: якість даних, алгоритмічна упередженість, інтеграція з застарілими системами, обробка в режимі реального часу. Від рішень - передових обчислень для зменшення затримок, модульних архітектур, стратегій боротьби з упередженістю - до етичних питань (конфіденційність, бульбашки фільтрів, доступність для користувачів з обмеженими можливостями) та урядових кейсів (Гельсінкі з багатомовним перекладом за допомогою штучного інтелекту) - дізнайтеся, як веб-розробники перетворюються з кодерів на стратегів користувацького досвіду і чому ті, хто орієнтується в цій еволюції сьогодні, домінуватимуть в інтернеті завтра.
9 листопада 2025 року

Системи підтримки прийняття рішень зі штучним інтелектом: зростання ролі радників у корпоративному управлінні

77% компаній використовують ШІ, але лише 1% мають "зрілі" впровадження - проблема не в технології, а в підході: тотальна автоматизація vs інтелектуальна співпраця. Goldman Sachs з АІ-консультантом на 10 000 співробітників генерує +30% ефективності охоплення та +12% перехресних продажів, зберігаючи людські рішення; Kaiser Permanente запобігає 500 смертям на рік, аналізуючи 100 предметів на годину за 12 годин до початку, але залишає діагноз лікарям. Модель Advisor вирішує проблему дефіциту довіри (лише 44% довіряють корпоративному ШІ) завдяки трьом стовпам: зрозумілий ШІ з прозорою логікою, відкалібровані показники довіри, постійний зворотній зв'язок для вдосконалення. Цифри: $22,3 трлн до 2030 року, стратегічні співробітники, які використовують ШІ, побачать 4-кратну рентабельність інвестицій до 2026 року. Практична 3-етапна дорожня карта - навички оцінки та управління, пілотний проект з показниками довіри, поступове масштабування з безперервним навчанням - застосовується у фінансовій сфері (контрольована оцінка ризиків), охороні здоров'я (діагностична підтримка), виробництві (прогнозоване технічне обслуговування). Майбутнє - це не заміна людини штучним інтелектом, а ефективна організація людино-машинної співпраці.