Бізнес

Дані для навчання штучного інтелекту: 10-мільярдний бізнес, який живить штучний інтелект

Масштабний ШІ коштує 29 мільярдів доларів, і ви, мабуть, ніколи про нього не чули. Це невидима індустрія навчальних даних, яка робить можливими ChatGPT і Stable Diffusion - ринок обсягом $9,58 млрд із щорічним зростанням на 27,7%. З 2020 року витрати зросли на 4300% (Gemini Ultra: 192 мільйони доларів). Але до 2028 року закінчиться доступний людський публічний текст. Тим часом, судові позови про захист авторських прав і мільйони паспортів, знайдених у наборах даних. Для компаній: ви можете почати безкоштовно з Hugging Face та Google Colab.

Підсумуйте цю статтю за допомогою ШІ

Невидима індустрія, яка робить можливими ChatGPT, Stable Diffusion і всі інші сучасні системи штучного інтелекту

Найкраще збережений секрет штучного інтелекту

Коли ви використовуєте ChatGPT, щоб написати електронного листа або згенерувати зображення в Midjourney, ви рідко замислюєтеся над тим, що стоїть за "магією" штучного інтелекту. Але за кожною розумною відповіддю і кожним згенерованим зображенням стоїть багатомільярдна індустрія, про яку мало хто говорить: ринок даних для навчання ШІ.

Цей сектор, який, за даними MarketsandMarkets, досягне $9,58 млрд до 2029 року з темпами зростання 27,7% на рік, є справжнім двигуном сучасного штучного інтелекту. Але як саме працює цей прихований бізнес?

Невидима екосистема, яка рухає мільярди

Комерційні гіганти

У світі даних для навчання ШІ домінують кілька компаній, про які більшість людей ніколи не чули:

Scale AI, найбільша компанія в галузі з часткою ринку 28%, нещодавно була оцінена в 29 мільярдів доларів після інвестицій Meta. Їхні корпоративні клієнти платять від 100 000 до кількох мільйонів доларів на рік за високоякісні дані.

Компанія Appen, що базується в Австралії, керує глобальною мережею з понад 1 мільйона фахівців у 170 країнах світу, які вручну тегують і курують дані для ШІ. Такі компанії, як Airbnb, John Deere та Procter & Gamble, користуються їхніми послугами для "навчання" своїх ШІ-моделей.

Світ відкритого коду

Паралельно існує екосистема з відкритим вихідним кодом, яку очолюють такі організації, як LAION (Large-scale Artificial Intelligence Open Network), німецька некомерційна організація, яка створила LAION-5B, набір даних з 5,85 мільярдів пар зображення-текст, що уможливило стабільну дифузію.

Common Crawl щомісяця випускає терабайти необроблених веб-даних, які використовуються для навчання GPT-3, LLaMA та багатьох інших мовних моделей.

Приховані витрати штучного інтелекту

Що не відомо широкому загалу, так це те, наскільки дорогим стало навчання сучасної АІ-моделі. За даними Epoch AI, за останні вісім років витрати зростали в 2-3 рази на рік.

Приклади реальних витрат:

Найдивовижніша цифра? За даними AltIndex.com, з 2020 року витрати на навчання ШІ зросли на 4300%.

Етичні та правові проблеми сектору

Питання авторського права

Одне з найбільш суперечливих питань стосується використання матеріалів, захищених авторським правом. У лютому 2025 року суд штату Делавер у справі Thomson Reuters проти ROSS Intelligence постановив, що навчання ШІ може становити пряме порушення авторських прав, відхиливши захист "добросовісного використання".

Управління з авторських прав США опублікувало 108-сторінковий звіт, в якому дійшло висновку, що певні види використання не можна захищати як добросовісне, що відкриває шлях до потенційно величезних витрат на ліцензування для компаній, що займаються ШІ.

Конфіденційність та персональні дані

Дослідження MIT Technology Review показало, що DataComp CommonPool, один з найбільш широко використовуваних наборів даних, містить мільйони зображень паспортів, кредитних карток і свідоцтв про народження. За останні два роки його завантажили понад 2 мільйони разів, що створює величезні проблеми з конфіденційністю.

Майбутнє: дефіцит та інновації

Проблема пікових даних

Експерти прогнозують, що до 2028 року більшість публічного тексту, створеного людиною, буде використовуватися в Інтернеті. Цей сценарій "піку даних" спонукає компанії до пошуку інноваційних рішень:

  • Синтетичні дані: штучна генерація навчальних даних
  • Ліцензійні угоди: Стратегічні партнерства, такі як між OpenAI та Financial Times
  • Мультимодальні дані: поєднання тексту, зображень, аудіо та відео

Незабаром з'являться нові правила

Каліфорнійський закон про прозорість Ш І вимагатиме від компаній розкривати набори даних, які використовуються для навчання, тоді як ЄС впроваджує аналогічні вимоги в Законі про ШІ.

Можливості для італійських компаній

Для компаній, які хочуть розробляти рішення зі штучного інтелекту, розуміння цієї екосистеми має вирішальне значення:

Бюджетні варіанти:

Enterprise Solutions:

  • ШІ та шкали Appen для критично важливих проектів
  • Спеціалізовані сервіси: Наприклад, Nexdata для NLP або FileMarket AI для аудіо даних

Висновки

Ринок даних для навчання ШІ коштує 9,58 мільярда доларів і зростає на 27,7 відсотка щороку. Ця невидима індустрія є не лише рушієм сучасного ШІ, але й однією з найбільших етичних і правових проблем сучасності.

У наступній статті ми розглянемо, як компанії можуть конкретно увійти в цей світ, і надамо практичний посібник для початку розробки рішень зі штучного інтелекту з використанням доступних сьогодні наборів даних та інструментів.

Для тих, хто хоче дізнатися більше зараз, ми підготували детальний посібник з дорожньою картою впровадження, конкретними витратами та повним набором інструментів, який можна завантажити безкоштовно за умови підписки на розсилку newsletter.

Корисні посилання, щоб розпочати роботу негайно:

Технічні джерела:

Не чекайте на "революцію штучного інтелекту". Створіть її. Через місяць у вас може з'явитися перша робоча модель, тоді як інші ще тільки планують.

Ресурси для розвитку бізнесу

9 листопада 2025 року

Регулювання штучного інтелекту для споживчих додатків: як підготуватися до нових правил 2025 року

2025 рік знаменує собою кінець ери "Дикого Заходу" для ШІ: Закон ЄС про ШІ набув чинності в серпні 2024 року, зобов'язання щодо ШІ-грамотності - з 2 лютого 2025 року, управління та GPAI - з 2 серпня. Каліфорнійські першопрохідці з SB 243 (народився після самогубства Сьюелла Сетцера, 14-річного підлітка, який розвинув емоційні стосунки з чат-ботом) накладають заборону на системи нав'язливої винагороди, виявлення суїцидальних думок, нагадування кожні 3 години "Я не людина", незалежний громадський аудит, штрафи в розмірі $1 000 за порушення. SB 420 вимагає проведення оцінки впливу "автоматизованих рішень з високим рівнем ризику" з правом на оскарження з боку людини. Реальне правозастосування: Noom назвав 2022 рік для ботів, які видавали себе за тренерів-людей, виплативши 56 мільйонів доларів. Національна тенденція: Алабама, Гаваї, Іллінойс, Мен, Массачусетс класифікують неповідомлення чат-ботів зі штучним інтелектом як порушення UDAP. Трирівневий підхід до критично важливих систем (охорона здоров'я/транспорт/енергетика): сертифікація перед розгортанням, прозоре розкриття інформації для споживачів, реєстрація загального призначення + тестування безпеки. Регуляторна клаптикова ковдра без федеральних преференцій: компанії з різних штатів повинні орієнтуватися у змінних вимогах. ЄС з серпня 2026 року: інформувати користувачів про взаємодію зі штучним інтелектом, якщо вона не очевидна, вміст, створений штучним інтелектом, має бути позначений як машинозчитуваний.
9 листопада 2025 року

Регулювання того, що не створюється: чи ризикує Європа залишитися технологічно неактуальною?

Європа залучає лише десяту частину світових інвестицій у штучний інтелект, але претендує на те, щоб диктувати глобальні правила. Це "Брюссельський ефект" - встановлення правил у планетарному масштабі за допомогою ринкової влади без стимулювання інновацій. Закон про штучний інтелект набуває чинності за поетапним графіком до 2027 року, але транснаціональні технологічні компанії реагують на це креативними стратегіями ухилення: посилаючись на комерційну таємницю, щоб уникнути розкриття даних про навчання, створюючи технічно сумісні, але незрозумілі резюме, використовуючи самооцінку, щоб знизити клас систем з "високого ризику" до "мінімального ризику", шукаючи країни-члени з менш суворим контролем. Парадокс екстериторіального авторського права: ЄС вимагає від OpenAI дотримуватися європейських законів навіть для навчання за межами Європи - принцип, який ніколи раніше не зустрічався в міжнародному праві. Виникає "подвійна модель": обмежені європейські версії проти просунутих глобальних версій тих самих продуктів ШІ. Реальний ризик: Європа стає "цифровою фортецею", ізольованою від глобальних інновацій, а європейські громадяни отримують доступ до гірших технологій. Суд ЄС у справі про кредитний скоринг вже відхилив захист "комерційної таємниці", але інтерпретаційна невизначеність залишається величезною - що саме означає "достатньо детальне резюме"? Ніхто не знає. Останнє питання без відповіді: чи створює ЄС етичний третій шлях між американським капіталізмом і китайським державним контролем, чи просто експортує бюрократію в сферу, де вона не конкурує? Наразі: світовий лідер у регулюванні ШІ, маргінал у його розвитку. Величезна програма.
9 листопада 2025 року

Винятки: де наука про дані зустрічається з історіями успіху

Наука про дані перевернула парадигму з ніг на голову: викиди більше не є "помилками, які потрібно усунути", а цінною інформацією, яку потрібно зрозуміти. Один викид може повністю спотворити модель лінійної регресії - змінити нахил з 2 до 10, але його усунення може означати втрату найважливішого сигналу в наборі даних. Машинне навчання представляє складні інструменти: Isolation Forest ізолює викиди шляхом побудови випадкових дерев рішень, Local Outlier Factor аналізує локальну щільність, Autoencoders реконструює нормальні дані і повідомляє про те, що вони не можуть відтворити. Існують глобальні викиди (температура -10°C в тропіках), контекстуальні викиди (витрати 1000 євро в бідному районі), колективні викиди (синхронізовані сплески трафіку в мережі, що вказують на атаку). Паралельно з Гладуеллом: "правило 10 000 годин" оскаржується - Пол Маккартні сказав: "Багато гуртів провели 10 000 годин у Гамбурзі без успіху, теорія не є безпомилковою". Азійський математичний успіх є не генетичним, а культурним: китайська система числення більш інтуїтивна, вирощування рису потребує постійного вдосконалення на відміну від територіальної експансії західного сільського господарства. Реальні застосування: британські банки відшкодовують 18% потенційних збитків завдяки виявленню аномалій у реальному часі, виробництво виявляє мікроскопічні дефекти, які не помічає людина, охорона здоров'я перевіряє дані клінічних випробувань з чутливістю виявлення аномалій понад 85%. Останній урок: оскільки наука про дані переходить від усунення відхилень до їх розуміння, ми повинні розглядати нестандартні кар'єри не як аномалії, які потрібно виправляти, а як цінні траєкторії, які потрібно вивчати.