Фабіо Лоріа

Парадокс продуктивності ШІ: думати, перш ніж діяти

16 червня 2025 року
Поділіться в соціальних мережах

"Парадокс продуктивності ШІ" є критичним викликом для компаній: незважаючи на значні інвестиції в технології штучного інтелекту, багатьом компаніям не вдається досягти очікуваної віддачі від продуктивності. Це явище, яке спостерігається навесні 2025 року, нагадує парадокс, вперше виявлений економістом Робертом Солоу у 1980-х роках щодо комп'ютерів: "Ми бачимо комп'ютери скрізь, окрім статистики продуктивності".

Ключем до подолання цього парадоксу є не (тільки) людино-машинна співпраця, а радше глибоке розуміння систем штучного інтелекту, які будуть застосовуватися, та організаційного контексту, в якому вони будуть впроваджуватися.

Причини парадоксу

1. Невибіркова імплементація

Багато організацій впроваджують рішення зі штучного інтелекту без належної оцінки того, як вони вписуються в існуючі робочі процеси. Згідно з опитуванням McKinsey, проведеним у 2025 році, 67% компаній повідомили, що принаймні одна ініціатива з впровадження штучного інтелекту призвела до непередбачуваних ускладнень, які знизили загальну продуктивність. Компанії, як правило, оптимізують окремі завдання, не враховуючи вплив на систему в цілому.

2. Прогалини в імплементації

Існує природна затримка між впровадженням нової технології та реалізацією її переваг. Особливо це стосується технологій загального призначення, таких як штучний інтелект. Як показали дослідження Массачусетського технологічного інституту та Чиказького університету, ШІ потребує численних "взаємодоповнюючих винаходів" - редизайну процесів, нових навичок та культурних змін - перш ніж його потенціал буде повністю реалізовано.

3. Брак організаційної зрілості

У звіті McKinsey за 2025 рік зазначається, що хоча 92% компаній планують збільшити свої інвестиції в ШІ протягом наступних трьох років, лише 1% організацій визначають своє впровадження ШІ як "зріле", тобто повністю інтегроване в робочі процеси з істотними бізнес-результатами.

Стратегії подолання парадоксу

1. Стратегічна оцінка перед прийняттям

Перш ніж впроваджувати будь-яке рішення зі штучного інтелекту, організації повинні провести комплексну оцінку, яка дасть відповіді на фундаментальні питання:

  • Які конкретні бізнес-проблеми вирішуватиме ця технологія?
  • Як він буде інтегрований в існуючі робочі процеси?
  • Які організаційні зміни знадобляться для його підтримки?
  • Які потенційні негативні побічні ефекти впровадження?

2. Розуміння організаційного контексту

Ефективність ШІ значною мірою залежить від культури та структури організації, в якій він впроваджується. Згідно з дослідженням Gallup 2024, серед працівників, які стверджують, що їхня організація повідомила про чітку стратегію інтеграції ШІ, 87% вважають, що ШІ матиме дуже позитивний вплив на їхню продуктивність та ефективність. Прозорість і комунікація є ключовими.

3. Картування потенціалу

Успішні організації ретельно аналізують, які аспекти роботи виграють від людського судження, а які - від обробки штучним інтелектом, замість того, щоб автоматизувати все, що технічно можливо. Такий підхід вимагає глибокого розуміння як можливостей ШІ, так і унікальних людських навичок в організації.

4. Реорганізація робочого процесу

Успішне впровадження штучного інтелекту часто вимагає переналаштування процесів, а не просто заміни людських завдань автоматизацією. Компанії повинні бути готові повністю переосмислити спосіб виконання роботи, а не накладати ШІ на існуючі процеси.

5. Показники адаптації

Успіх ШІ слід вимірювати не лише підвищенням ефективності, а й тим, наскільки ефективно команди адаптуються до нових можливостей штучного інтелекту. Організаціям слід розробити метрики, які оцінюють як технічні результати, так і адаптацію людей.

Нова модель зрілості ШІ

У 2025 році організаціям знадобиться нова система оцінки зрілості штучного інтелекту, в якій пріоритет надаватиметься інтеграції, а не впровадженню. Питання вже не в тому, "Скільки ми автоматизували?", а в тому, "Наскільки ефективно ми покращили можливості нашої організації завдяки автоматизації?".

Це означає глибоку зміну в тому, як ми розуміємо взаємозв'язок між технологіями та продуктивністю. Найефективніші організації дотримуються багатоступеневого процесу:

  1. Планування та вибір інструментів: Розробіть стратегічний план, який чітко визначає найбільш підходящі бізнес-цілі та технології штучного інтелекту.
  2. Підготовка даних та інфраструктури: переконайтеся, що наявні системи та дані готові до підтримки ініціатив зі штучного інтелекту.
  3. Культурне узгодження: створити середовище, яке підтримує впровадження ШІ за допомогою навчання, прозорої комунікації та управління змінами.
  4. Поетапне впровадження: Впроваджуйте рішення зі штучного інтелекту поступово, ретельно відстежуючи вплив і адаптуючи підхід відповідно до результатів.
  5. Постійне оцінювання: Регулярно вимірюйте як технічні результати, так і вплив на організацію в цілому.

Висновок

Парадокс продуктивності штучного інтелекту - це не причина сповільнювати впровадження штучного інтелекту, а запрошення до більш зваженого підходу до його застосування. Ключ до подолання цього парадоксу полягає в глибокому розумінні систем штучного інтелекту, які планується впроваджувати, та аналізі організаційного контексту, в якому вони будуть використовуватися.

Організації, які успішно впроваджують штучний інтелект, зосереджуються не лише на технології, а й на тому, як ця технологія вписується в їхню конкретну організаційну екосистему. Вони ретельно оцінюють переваги та потенційні недоліки перед впровадженням, належним чином готують свою інфраструктуру та культуру, а також впроваджують ефективні стратегії управління змінами.

Джерела

  1. Ініціатива MIT з цифрової економіки - https://ide.mit.edu/sites/default/files/publications/IDE%20Research%20Brief_v0118.pdf
  2. McKinsey & Company - https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/superagency-in-the-workplace-empowering-people-to-unlock-ais-full-potential-at-work
  3. Бринйольфссон, Е., Рок, Д. та Сиверсон, К. - https://www.nber.org/papers/w24001
  4. Gallup Workplace - https://www.gallup.com/workplace/652727/strategy-fail-without-culture-supports.aspx
  5. PwC - https://www.pwc.com/us/en/tech-effect/ai-analytics/ai-predictions.html
  6. Експоненціальний вигляд - https://www.exponentialview.co/p/ais-productivity-paradox-how-it-might
  7. KPMG - https://kpmg.com/us/en/articles/2024/ai-ready-corporate-culture.html
  8. MIT Sloan Management Review - https://sloanreview.mit.edu/article/unpacking-the-ai-productivity-paradox/

Фабіо Лоріа

CEO & Founder | CEO & Founder Electe

Генеральний директор Electe, я допомагаю малим та середнім підприємствам приймати рішення на основі даних. Пишу про штучний інтелект у світі бізнесу.

Найпопулярніші
Підпишіться на останні новини

Отримуйте щотижневі новини та інсайти на свою поштову скриньку
. Не пропустіть!

Дякуємо! Ваша заявка отримана!
Ой, щось пішло не так під час відправлення форми.