Бізнес

Пастка прогнозування: чому передбачення майбутнього недостатньо

Складні прогностичні моделі, які генерують прогнози, якими ніхто не користується, - це "пастка прогнозів". ШІ за визначенням орієнтований на минуле: історичні дані є його сировиною. Він виявляє кореляції, а не причини. Справжнє питання не в тому, "що може статися", а в тому, "що ми повинні робити". Компанії-переможці у 2025 році не матимуть кращих алгоритмів - вони інтегрують ШІ в процеси прийняття рішень. Зміна перспективи: розглядати ШІ не як технологію прогнозування, а як технологію покращення процесу прийняття рішень.

Підсумуйте цю статтю за допомогою ШІ

Вступ

Багато компаній потрапили в те, що ми називаємо "пасткою передбачення": інвестували значні кошти в технології штучного інтелекту, не усвідомлюючи, що ці можливості представляють лише частину цінності, яку штучний інтелект може запропонувати для прийняття бізнес-рішень.

Як зазначено в нещодавній статті в Communications of the ACM, "здатність ШІ передбачати не обов'язково перетворюється на міркування та прийняття рішень у нових ситуаціях" [1]. У цій статті розглядаються виклики, обмеження та можливі рішення для уникнення цієї пастки.

Що таке пастка прогнозування?

Пастка прогнозування виникає, коли організації:

  1. Вони плутають прогнозування з кінцевою метою: багато компаній мають складні моделі штучного інтелекту, які генерують прогнози, що залишаються невикористаними, оскільки вони не побудували організаційну інфраструктуру для перетворення цих інсайтів на конкретні дії [2].
  2. Вони не здатні подолати розрив між тим, "що може статися", і тим, "що ми повинні робити": як зазначається в статті "За межами передбачення", найефективніші впровадження ШІ не просто прогнозують результати, а допомагають формулювати рішення, оцінювати варіанти і моделювати потенційні наслідки різних варіантів [2].
  3. Використання предиктивних моделей для прийняття рішень: Як зазначив Джордж Статакополус в Ad Age, "я часто бачу, як маркетологи намагаються використовувати предиктивні моделі для прийняття рішень. Це не зовсім помилка, але це більш застарілий і громіздкий спосіб ведення бізнесу" [3].

Фундаментальні обмеження предиктивного ШІ

Предиктивний ШІ має кілька невід'ємних обмежень, які можуть знизити його цінність для прийняття рішень:

  1. Залежність від історичних даних: "Ключове обмеження прогнозування ШІ випливає з того факту, що сировиною, яку ШІ використовує для прогнозування, є минулі дані. Тому ШІ обов'язково завжди орієнтований на минуле" [1]. Це робить його менш надійним для безпрецедентних або швидкозмінних сценаріїв.
  2. Проблеми з причинно-наслідковими зв'язками: багато систем ШІ виявляють кореляції, але не причинно-наслідкові зв'язки. Це те, що деякі експерти називають "пасткою причинності" - системи машинного навчання отримують інформацію "з мільйонів дрібних кореляцій", але часто не можуть сказати нам, які саме особливості визначають конкретний результат [4].
  3. Проблеми з інтерпретацією: Складні моделі машинного навчання часто функціонують як "чорні скриньки", що ускладнює розуміння того, як вони приходять до певних прогнозів. Як зазначає Qymatix, "недолік полягає в тому, що ви не можете швидко визначити, які характеристики дають вам найбільше інформації про конкретного клієнта" [4].
  4. Упередженість підтвердження та вирівнювання: Дослідження показали, що ШІ може страждати від упередженості у прийнятті рішень, включаючи тенденцію "посилювати формулювання запитання користувача, а не ставити під сумнів його передумови" [5]. Таке "упередження вирівнювання" може призвести до відповідей, які здаються обґрунтованими, але насправді ґрунтуються на слабко підтверджених зв'язках.

За межами форсайту: на шляху до справжнього прийняття рішень

Щоб подолати пастку прогнозування, компанії повинні:

  1. Почніть з рішень, а не з даних: Визначте найбільш важливі, часті та складні рішення, а потім працюйте у зворотному напрямку, щоб визначити, які можливості ШІ можуть їх покращити [2].
  2. Проектування для розширення можливостей, а не для автоматизації: Створюйте інтерфейси та робочі процеси, які поєднують інсайти ШІ з людськими судженнями, а не намагаються вилучити людину з циклу прийняття рішень [2].
  3. Побудова контурів зворотного зв'язку для прийняття рішень: систематичне відстеження результатів рішень та надання цієї інформації як для покращення ШІ, так і для вдосконалення процесів прийняття рішень [2].
  4. Розвиток грамотності прийняття рішень: навчати команди не лише грамотності ШІ, але й розумінню упереджень при прийнятті рішень, імовірнісного мислення та оцінці якості рішень [2].
  5. Впровадження інтелекту прийняття рішень: Більш зрілі впровадження ШІ використовують інтелект прийняття рішень - злиття науки про дані, теорії прийняття рішень і науки про поведінку для покращення людських суджень [2].

Майбутнє: партнерство між людиною та ОВС

Справжня цінність ШІ полягає в партнерстві між людьми і машинами. У цьому партнерстві:

  • ШІ обробляє великі обсяги інформації, ідентифікує закономірності, кількісно оцінює невизначеність і підтримує узгодженість.
  • Люди роблять свій внесок через розуміння контексту, етичні судження, творче вирішення проблем та міжособистісне спілкування.

Як зазначається в нещодавній статті в MIT PMC, "Щоб зрозуміти умови, за яких прийняття рішень з використанням ШІ призводить до взаємодоповнюваності, корисно розрізняти дві різні причини потенційної нездатності досягти взаємодоповнюваності" [6]. Дослідження показують, що коли прогнози людини і ШІ є достатньо незалежними, їхня комбінація може перевершити будь-який підхід окремо.

Висновок

У міру наближення до 2025 року конкурентна перевага штучного інтелекту все частіше полягає не в наявності кращих алгоритмів або більшого обсягу даних, а в більш ефективній інтеграції штучного інтелекту в процеси прийняття рішень по всій організації. Компанії, які опановують цю інтеграцію, спостерігають помітні покращення не лише в операційних показниках, але й у швидкості прийняття рішень, їхній якості та узгодженості.

Щоб уникнути пастки прогнозування, потрібно змінити точку зору: розглядати ШІ не як технологію прогнозування, а як технологію покращення процесу прийняття рішень. Як зазначає Сьюзан Еті зі Слоунського інституту MIT: "Я намагаюся допомогти менеджерам зрозуміти, що робить проблему легкою або складною з точки зору ШІ, враховуючи тип ШІ, який ми маємо сьогодні" [7].

Організації, яким вдасться зорієнтуватися в цій складній ситуації, отримають найбільшу користь від штучного інтелекту в найближчі роки.

Джерела

  1. Повідомлення ACM (квітень 2025) - "Чи поширюється прогнозування ШІ на прийняття рішень?" - https://cacm.acm.org/opinion/does-ai-prediction-scale-to-decision-making/" id="">https://cacm.acm.org/opinion/does-ai-prediction-scale-to-decision-making/
  2. Стаття "За межами передбачення" (квітень 2025 року) - "Чому справжня цінність ШІ полягає в розширенні можливостей прийняття рішень".
  3. Ad Age (листопад 2024) - "Як перейти від прогнозів ШІ до справжнього прийняття рішень за допомогою ШІ" - https://adage.com/article/digital-marketing-ad-tech-news/how-pivot-ai-predictions-true-ai-decision-making/2589761
  4. Qymatix (серпень 2021) - "Як уникнути причинно-наслідкової пастки машинного навчання з чорним ящиком" - https://qymatix.de/en/causality-trap-machine-learning-black-box/
  5. Enabling Empowerment (лютий 2025 року) - "Остаточна пастка прийняття рішень ШІ: бажання догодити" - https://enablingempowerment.com/ai-decision-making-alignment-bias/
  6. PMC (2024) - "Три виклики для прийняття рішень за допомогою ШІ" - https://pmc.ncbi.nlm.nih.gov/articles/PMC11373149/
  7. MIT Sloan Management Review - "The Perils of Applying AI Prediction to Complex Decisions" - https://sloanreview.mit.edu/article/the-perils-of-applying-ai-prediction-to-complex-decisions/

Ресурси для розвитку бізнесу

9 листопада 2025 року

AI Trends 2025: 6 стратегічних рішень для безперешкодного впровадження штучного інтелекту

87% компаній визнають ШІ конкурентною необхідністю, але багато хто зазнає невдачі в інтеграції - проблема не в технології, а в підході. 73% керівників називають прозорість (Explainable AI) вирішальним фактором для залучення зацікавлених сторін, тоді як успішні впровадження слідують стратегії "починай з малого, думай про велике": цільові високоцінні пілотні проекти, а не тотальна трансформація бізнесу. Реальний кейс: виробнича компанія впроваджує предиктивне технічне обслуговування на основі штучного інтелекту на одній виробничій лінії, досягає зниження простоїв на 67% за 60 днів і каталізує впровадження в масштабах усього підприємства. Перевірені кращі практики: інтеграція через API/проміжне програмне забезпечення замість повної заміни для скорочення часу навчання; виділення 30% ресурсів на управління змінами з рольовим навчанням забезпечує +40% рівня впровадження та +65% задоволеності користувачів; паралельне впровадження для перевірки результатів ШІ в порівнянні з існуючими методами; поступова деградація з резервними системами; щотижневі оглядові цикли протягом перших 90 днів для моніторингу технічної продуктивності, впливу на бізнес, рівня впровадження, рентабельності інвестицій. Успіх вимагає балансу між технічними та людськими факторами: внутрішні чемпіони з ШІ, фокус на практичних вигодах, еволюційна гнучкість.
9 листопада 2025 року

Розробники та штучний інтелект на веб-сайтах: виклики, інструменти та найкращі практики: міжнародна перспектива

Італія застрягла на позначці 8,2% впровадження ШІ (проти 13,5% в середньому по ЄС), тоді як у всьому світі 40% компаній вже використовують ШІ на практиці - і цифри показують, чому цей розрив є фатальним: чат-бот Amtrak генерує 800% рентабельності інвестицій, GrandStay економить $2,1 млн на рік, обробляючи 72% запитів автономно, Telenor збільшує доходи на 15%. У цьому звіті досліджується впровадження ШІ на веб-сайтах на практичних кейсах (Lutech Brain для тендерів, Netflix для рекомендацій, L'Oréal Beauty Gifter з 27-кратним залученням порівняно з електронною поштою) і розглядаються реальні технічні проблеми: якість даних, алгоритмічна упередженість, інтеграція з застарілими системами, обробка в режимі реального часу. Від рішень - передових обчислень для зменшення затримок, модульних архітектур, стратегій боротьби з упередженістю - до етичних питань (конфіденційність, бульбашки фільтрів, доступність для користувачів з обмеженими можливостями) та урядових кейсів (Гельсінкі з багатомовним перекладом за допомогою штучного інтелекту) - дізнайтеся, як веб-розробники перетворюються з кодерів на стратегів користувацького досвіду і чому ті, хто орієнтується в цій еволюції сьогодні, домінуватимуть в інтернеті завтра.
9 листопада 2025 року

Системи підтримки прийняття рішень зі штучним інтелектом: зростання ролі радників у корпоративному управлінні

77% компаній використовують ШІ, але лише 1% мають "зрілі" впровадження - проблема не в технології, а в підході: тотальна автоматизація vs інтелектуальна співпраця. Goldman Sachs з АІ-консультантом на 10 000 співробітників генерує +30% ефективності охоплення та +12% перехресних продажів, зберігаючи людські рішення; Kaiser Permanente запобігає 500 смертям на рік, аналізуючи 100 предметів на годину за 12 годин до початку, але залишає діагноз лікарям. Модель Advisor вирішує проблему дефіциту довіри (лише 44% довіряють корпоративному ШІ) завдяки трьом стовпам: зрозумілий ШІ з прозорою логікою, відкалібровані показники довіри, постійний зворотній зв'язок для вдосконалення. Цифри: $22,3 трлн до 2030 року, стратегічні співробітники, які використовують ШІ, побачать 4-кратну рентабельність інвестицій до 2026 року. Практична 3-етапна дорожня карта - навички оцінки та управління, пілотний проект з показниками довіри, поступове масштабування з безперервним навчанням - застосовується у фінансовій сфері (контрольована оцінка ризиків), охороні здоров'я (діагностична підтримка), виробництві (прогнозоване технічне обслуговування). Майбутнє - це не заміна людини штучним інтелектом, а ефективна організація людино-машинної співпраці.