Бізнес

Пастка прогнозування: чому передбачення майбутнього недостатньо

Складні прогностичні моделі, які генерують прогнози, якими ніхто не користується, - це "пастка прогнозів". ШІ за визначенням орієнтований на минуле: історичні дані є його сировиною. Він виявляє кореляції, а не причини. Справжнє питання не в тому, "що може статися", а в тому, "що ми повинні робити". Компанії-переможці у 2025 році не матимуть кращих алгоритмів - вони інтегрують ШІ в процеси прийняття рішень. Зміна перспективи: розглядати ШІ не як технологію прогнозування, а як технологію покращення процесу прийняття рішень.

Підсумуйте цю статтю за допомогою ШІ

Вступ

Багато компаній потрапили в те, що ми називаємо "пасткою передбачення": інвестували значні кошти в технології штучного інтелекту, не усвідомлюючи, що ці можливості представляють лише частину цінності, яку штучний інтелект може запропонувати для прийняття бізнес-рішень.

Як зазначено в нещодавній статті в Communications of the ACM, "здатність ШІ передбачати не обов'язково перетворюється на міркування та прийняття рішень у нових ситуаціях" [1]. У цій статті розглядаються виклики, обмеження та можливі рішення для уникнення цієї пастки.

Що таке пастка прогнозування?

Пастка прогнозування виникає, коли організації:

  1. Вони плутають прогнозування з кінцевою метою: багато компаній мають складні моделі штучного інтелекту, які генерують прогнози, що залишаються невикористаними, оскільки вони не побудували організаційну інфраструктуру для перетворення цих інсайтів на конкретні дії [2].
  2. Вони не здатні подолати розрив між тим, "що може статися", і тим, "що ми повинні робити": як зазначається в статті "За межами передбачення", найефективніші впровадження ШІ не просто прогнозують результати, а допомагають формулювати рішення, оцінювати варіанти і моделювати потенційні наслідки різних варіантів [2].
  3. Використання предиктивних моделей для прийняття рішень: Як зазначив Джордж Статакополус в Ad Age, "я часто бачу, як маркетологи намагаються використовувати предиктивні моделі для прийняття рішень. Це не зовсім помилка, але це більш застарілий і громіздкий спосіб ведення бізнесу" [3].

Фундаментальні обмеження предиктивного ШІ

Предиктивний ШІ має кілька невід'ємних обмежень, які можуть знизити його цінність для прийняття рішень:

  1. Залежність від історичних даних: "Ключове обмеження прогнозування ШІ випливає з того факту, що сировиною, яку ШІ використовує для прогнозування, є минулі дані. Тому ШІ обов'язково завжди орієнтований на минуле" [1]. Це робить його менш надійним для безпрецедентних або швидкозмінних сценаріїв.
  2. Проблеми з причинно-наслідковими зв'язками: багато систем ШІ виявляють кореляції, але не причинно-наслідкові зв'язки. Це те, що деякі експерти називають "пасткою причинності" - системи машинного навчання отримують інформацію "з мільйонів дрібних кореляцій", але часто не можуть сказати нам, які саме особливості визначають конкретний результат [4].
  3. Проблеми з інтерпретацією: Складні моделі машинного навчання часто функціонують як "чорні скриньки", що ускладнює розуміння того, як вони приходять до певних прогнозів. Як зазначає Qymatix, "недолік полягає в тому, що ви не можете швидко визначити, які характеристики дають вам найбільше інформації про конкретного клієнта" [4].
  4. Упередженість підтвердження та вирівнювання: Дослідження показали, що ШІ може страждати від упередженості у прийнятті рішень, включаючи тенденцію "посилювати формулювання запитання користувача, а не ставити під сумнів його передумови" [5]. Таке "упередження вирівнювання" може призвести до відповідей, які здаються обґрунтованими, але насправді ґрунтуються на слабко підтверджених зв'язках.

За межами форсайту: на шляху до справжнього прийняття рішень

Щоб подолати пастку прогнозування, компанії повинні:

  1. Почніть з рішень, а не з даних: Визначте найбільш важливі, часті та складні рішення, а потім працюйте у зворотному напрямку, щоб визначити, які можливості ШІ можуть їх покращити [2].
  2. Проектування для розширення можливостей, а не для автоматизації: Створюйте інтерфейси та робочі процеси, які поєднують інсайти ШІ з людськими судженнями, а не намагаються вилучити людину з циклу прийняття рішень [2].
  3. Побудова контурів зворотного зв'язку для прийняття рішень: систематичне відстеження результатів рішень та надання цієї інформації як для покращення ШІ, так і для вдосконалення процесів прийняття рішень [2].
  4. Розвиток грамотності прийняття рішень: навчати команди не лише грамотності ШІ, але й розумінню упереджень при прийнятті рішень, імовірнісного мислення та оцінці якості рішень [2].
  5. Впровадження інтелекту прийняття рішень: Більш зрілі впровадження ШІ використовують інтелект прийняття рішень - злиття науки про дані, теорії прийняття рішень і науки про поведінку для покращення людських суджень [2].

Майбутнє: партнерство між людиною та ОВС

Справжня цінність ШІ полягає в партнерстві між людьми і машинами. У цьому партнерстві:

  • ШІ обробляє великі обсяги інформації, ідентифікує закономірності, кількісно оцінює невизначеність і підтримує узгодженість.
  • Люди роблять свій внесок через розуміння контексту, етичні судження, творче вирішення проблем та міжособистісне спілкування.

Як зазначається в нещодавній статті в MIT PMC, "Щоб зрозуміти умови, за яких прийняття рішень з використанням ШІ призводить до взаємодоповнюваності, корисно розрізняти дві різні причини потенційної нездатності досягти взаємодоповнюваності" [6]. Дослідження показують, що коли прогнози людини і ШІ є достатньо незалежними, їхня комбінація може перевершити будь-який підхід окремо.

Висновок

У міру наближення до 2025 року конкурентна перевага штучного інтелекту все частіше полягає не в наявності кращих алгоритмів або більшого обсягу даних, а в більш ефективній інтеграції штучного інтелекту в процеси прийняття рішень по всій організації. Компанії, які опановують цю інтеграцію, спостерігають помітні покращення не лише в операційних показниках, але й у швидкості прийняття рішень, їхній якості та узгодженості.

Щоб уникнути пастки прогнозування, потрібно змінити точку зору: розглядати ШІ не як технологію прогнозування, а як технологію покращення процесу прийняття рішень. Як зазначає Сьюзан Еті зі Слоунського інституту MIT: "Я намагаюся допомогти менеджерам зрозуміти, що робить проблему легкою або складною з точки зору ШІ, враховуючи тип ШІ, який ми маємо сьогодні" [7].

Організації, яким вдасться зорієнтуватися в цій складній ситуації, отримають найбільшу користь від штучного інтелекту в найближчі роки.

Джерела

  1. Повідомлення ACM (квітень 2025) - "Чи поширюється прогнозування ШІ на прийняття рішень?" - https://cacm.acm.org/opinion/does-ai-prediction-scale-to-decision-making/" id="">https://cacm.acm.org/opinion/does-ai-prediction-scale-to-decision-making/
  2. Стаття "За межами передбачення" (квітень 2025 року) - "Чому справжня цінність ШІ полягає в розширенні можливостей прийняття рішень".
  3. Ad Age (листопад 2024) - "Як перейти від прогнозів ШІ до справжнього прийняття рішень за допомогою ШІ" - https://adage.com/article/digital-marketing-ad-tech-news/how-pivot-ai-predictions-true-ai-decision-making/2589761
  4. Qymatix (серпень 2021) - "Як уникнути причинно-наслідкової пастки машинного навчання з чорним ящиком" - https://qymatix.de/en/causality-trap-machine-learning-black-box/
  5. Enabling Empowerment (лютий 2025 року) - "Остаточна пастка прийняття рішень ШІ: бажання догодити" - https://enablingempowerment.com/ai-decision-making-alignment-bias/
  6. PMC (2024) - "Три виклики для прийняття рішень за допомогою ШІ" - https://pmc.ncbi.nlm.nih.gov/articles/PMC11373149/
  7. MIT Sloan Management Review - "The Perils of Applying AI Prediction to Complex Decisions" - https://sloanreview.mit.edu/article/the-perils-of-applying-ai-prediction-to-complex-decisions/

Ресурси для розвитку бізнесу

9 листопада 2025 року

Регулювання штучного інтелекту для споживчих додатків: як підготуватися до нових правил 2025 року

2025 рік знаменує собою кінець ери "Дикого Заходу" для ШІ: Закон ЄС про ШІ набув чинності в серпні 2024 року, зобов'язання щодо ШІ-грамотності - з 2 лютого 2025 року, управління та GPAI - з 2 серпня. Каліфорнійські першопрохідці з SB 243 (народився після самогубства Сьюелла Сетцера, 14-річного підлітка, який розвинув емоційні стосунки з чат-ботом) накладають заборону на системи нав'язливої винагороди, виявлення суїцидальних думок, нагадування кожні 3 години "Я не людина", незалежний громадський аудит, штрафи в розмірі $1 000 за порушення. SB 420 вимагає проведення оцінки впливу "автоматизованих рішень з високим рівнем ризику" з правом на оскарження з боку людини. Реальне правозастосування: Noom назвав 2022 рік для ботів, які видавали себе за тренерів-людей, виплативши 56 мільйонів доларів. Національна тенденція: Алабама, Гаваї, Іллінойс, Мен, Массачусетс класифікують неповідомлення чат-ботів зі штучним інтелектом як порушення UDAP. Трирівневий підхід до критично важливих систем (охорона здоров'я/транспорт/енергетика): сертифікація перед розгортанням, прозоре розкриття інформації для споживачів, реєстрація загального призначення + тестування безпеки. Регуляторна клаптикова ковдра без федеральних преференцій: компанії з різних штатів повинні орієнтуватися у змінних вимогах. ЄС з серпня 2026 року: інформувати користувачів про взаємодію зі штучним інтелектом, якщо вона не очевидна, вміст, створений штучним інтелектом, має бути позначений як машинозчитуваний.
9 листопада 2025 року

Регулювання того, що не створюється: чи ризикує Європа залишитися технологічно неактуальною?

Європа залучає лише десяту частину світових інвестицій у штучний інтелект, але претендує на те, щоб диктувати глобальні правила. Це "Брюссельський ефект" - встановлення правил у планетарному масштабі за допомогою ринкової влади без стимулювання інновацій. Закон про штучний інтелект набуває чинності за поетапним графіком до 2027 року, але транснаціональні технологічні компанії реагують на це креативними стратегіями ухилення: посилаючись на комерційну таємницю, щоб уникнути розкриття даних про навчання, створюючи технічно сумісні, але незрозумілі резюме, використовуючи самооцінку, щоб знизити клас систем з "високого ризику" до "мінімального ризику", шукаючи країни-члени з менш суворим контролем. Парадокс екстериторіального авторського права: ЄС вимагає від OpenAI дотримуватися європейських законів навіть для навчання за межами Європи - принцип, який ніколи раніше не зустрічався в міжнародному праві. Виникає "подвійна модель": обмежені європейські версії проти просунутих глобальних версій тих самих продуктів ШІ. Реальний ризик: Європа стає "цифровою фортецею", ізольованою від глобальних інновацій, а європейські громадяни отримують доступ до гірших технологій. Суд ЄС у справі про кредитний скоринг вже відхилив захист "комерційної таємниці", але інтерпретаційна невизначеність залишається величезною - що саме означає "достатньо детальне резюме"? Ніхто не знає. Останнє питання без відповіді: чи створює ЄС етичний третій шлях між американським капіталізмом і китайським державним контролем, чи просто експортує бюрократію в сферу, де вона не конкурує? Наразі: світовий лідер у регулюванні ШІ, маргінал у його розвитку. Величезна програма.
9 листопада 2025 року

Винятки: де наука про дані зустрічається з історіями успіху

Наука про дані перевернула парадигму з ніг на голову: викиди більше не є "помилками, які потрібно усунути", а цінною інформацією, яку потрібно зрозуміти. Один викид може повністю спотворити модель лінійної регресії - змінити нахил з 2 до 10, але його усунення може означати втрату найважливішого сигналу в наборі даних. Машинне навчання представляє складні інструменти: Isolation Forest ізолює викиди шляхом побудови випадкових дерев рішень, Local Outlier Factor аналізує локальну щільність, Autoencoders реконструює нормальні дані і повідомляє про те, що вони не можуть відтворити. Існують глобальні викиди (температура -10°C в тропіках), контекстуальні викиди (витрати 1000 євро в бідному районі), колективні викиди (синхронізовані сплески трафіку в мережі, що вказують на атаку). Паралельно з Гладуеллом: "правило 10 000 годин" оскаржується - Пол Маккартні сказав: "Багато гуртів провели 10 000 годин у Гамбурзі без успіху, теорія не є безпомилковою". Азійський математичний успіх є не генетичним, а культурним: китайська система числення більш інтуїтивна, вирощування рису потребує постійного вдосконалення на відміну від територіальної експансії західного сільського господарства. Реальні застосування: британські банки відшкодовують 18% потенційних збитків завдяки виявленню аномалій у реальному часі, виробництво виявляє мікроскопічні дефекти, які не помічає людина, охорона здоров'я перевіряє дані клінічних випробувань з чутливістю виявлення аномалій понад 85%. Останній урок: оскільки наука про дані переходить від усунення відхилень до їх розуміння, ми повинні розглядати нестандартні кар'єри не як аномалії, які потрібно виправляти, а як цінні траєкторії, які потрібно вивчати.