Newsletter

Штучний інтелект в енергетиці: нові рішення для виробництва та дистрибуції

Siemens Energy: -30% простоїв. GE: 1 мільярд доларів заощаджено на рік. Iberdrola: -25% відходів у відновлюваній енергетиці. ШІ трансформує управління енергією: прогнози погоди для оптимізації використання сонячної та вітрової енергії, прогнозоване технічне обслуговування, розумні мережі, які передбачають проблеми. Але існує парадокс: центри обробки даних зі штучним інтелектом споживають сотні кіловат-годин за одну навчальну сесію. Яке рішення? Циклічність - ШІ керує відновлюваними джерелами енергії, які живлять системи ШІ.

Підсумуйте цю статтю за допомогою ШІ

Штучний інтелект змінює управління енергією завдяки оптимізації відновлюваних джерел енергії та "розумним" мережам. Алгоритми допомагають електроенергетичним компаніям:

  • Зменшення викидів CO2
  • Підвищення надійності відновлюваних джерел енергії
  • Прогнозування попиту
  • Запобігання перериванням
  • Оптимізація дистрибуції

Вплив

  1. Виробництво електроенергії:

Алгоритми прогнозування підвищують надійність відновлюваних джерел енергії, передбачаючи погодні умови для сонячної та вітрової енергетики. Прогнозоване технічне обслуговування зменшує час простою станції та операційні витрати.

  1. Споживання енергії:

Користувачі можуть переносити споживання на непікові години, зменшуючи витрати та навантаження на мережу. Системи розумного дому автоматично регулюють термостати, освітлення та електроприлади.

  1. Управління мережею

Сучасні цифрові технології революціонізують спосіб управління енергетичною інфраструктурою. Зокрема, штучнийінтелект виявляється безцінним інструментом для електророзподільчих компаній. Ці сучасні системи безперервно аналізують величезні обсяги даних з датчиків, розподілених по всій мережі, від ліній електропередач до трансформаторних підстанцій.

Завдяки складним алгоритмам машинного навчання з'явилася можливість виявляти потенційні проблеми ще до того, як вони спричинять перебої в обслуговуванні. Такий превентивний підхід, відомий як предиктивне обслуговування, дає чудові результати: кілька компаній у цьому секторі відчули різке зменшення кількості перебоїв у наданні послуг, що призвело до значного покращення якості обслуговування громадян та бізнесу.

Вплив цієї технологічної трансформації виходить за рамки простого зменшення кількості відключень. Здатність прогнозувати і запобігати проблемам дозволяє більш ефективно управляти ресурсами, краще планувати заходи і, в кінцевому підсумку, більш надійно і стабільно забезпечувати електроенергією всю громаду.

Приклади впливу:

  • Siemens Energy: -30% простоїв
  • General Electric: 1 мільярд доларів щорічної економії
  • Iberdrola: -25% втрат енергії у відновлюваній енергетиці

Перевірені програми:

  • Shell і BP: операційна оптимізація та скорочення викидів
  • Tesla: зберігання енергії та чисті рішення
  • Duke Energy та Національна мережа: модернізація електромереж

ШІ покращує управління енергоспоживанням, створюючи його:

  • Більш ефективні
  • Більш надійний
  • Більш стійкий
  • Дешевше.

Ці розробки підтримують перехід до більш сталої енергетичної системи за допомогою технологічних рішень, які вже застосовуються на місцях.

Висновки

Штучний інтелект революціонізує енергетичний сектор, пропонуючи інноваційні рішення для оптимізації виробництва, розподілу та споживання енергії. Однак сам ШІ має свій вплив на енергетику. Обчислювальні центри, необхідні для навчання та запуску моделей штучного інтелекту, потребують значних обсягів енергії: за деякими оцінками, на одне навчання складних моделей витрачається до кількох сотень кіловат-годин.

Щоб максимізувати чисту вигоду від ШІ в енергетичному секторі, компанії застосовують комплексний підхід. З одного боку, вони використовують більш ефективні архітектури та спеціалізоване обладнання. З іншого боку, живлячи обчислювальні центри відновлюваною енергією, створюючи замкнутий цикл, в якому ШІ допомагає краще управляти відновлюваними джерелами, які, в свою чергу, живлять системи ШІ.

Інновації в галузі обчислювальної ефективності та технологій охолодження центрів обробки даних, а також використання відновлюваних джерел енергії або, де це дозволено, атомної енергії, матимуть вирішальне значення для забезпечення того, щоб ШІ залишався стійким інструментом для енергетичного переходу.

Довгостроковий успіх цього підходу залежатиме від здатності збалансувати експлуатаційні переваги системи з її енергетичною стійкістю, що сприятиме створенню справді чистого та ефективного майбутнього. Пізніше я напишу більш детально на цю тему.

Ресурси для розвитку бізнесу

9 листопада 2025 року

Ілюзія розуму: дебати, які стрясають світ штучного інтелекту

Apple публікує дві розгромні статті - "GSM-Symbolic" (жовтень 2024) та "The Illusion of Thinking" (червень 2025), які демонструють, як LLM не справляється з невеликими варіаціями класичних задач (Ханойська вежа, переправа через річку): "продуктивність знижується, коли змінюються лише числові значення". Нульовий успіх на складній Ханойській вежі. Але Алекс Лоусен (Open Philanthropy) заперечує "Ілюзією мислення", демонструючи невдалу методологію: невдачі були пов'язані з обмеженнями на виведення символів, а не з колапсом міркувань, автоматичні скрипти неправильно класифікували частково правильні результати, деякі головоломки були математично нерозв'язними. Повторюючи тести з рекурсивними функціями замість того, щоб перераховувати ходи, Claude/Gemini/GPT розгадали 15 рекордів Ханойської вежі. Гері Маркус приймає тезу Apple про "зміну розподілу", але стаття про хронометраж до WWDC піднімає стратегічні питання. Наслідки для бізнесу: наскільки можна довіряти ШІ у вирішенні критично важливих завдань? Рішення: нейросимволічні підходи - нейронні мережі для розпізнавання образів + мова, символьні системи для формальної логіки. Приклад: АІ-бухгалтерія розуміє "скільки витрат на відрядження?", але SQL/розрахунки/податковий аудит = детермінований код.
9 листопада 2025 року

Tech Talk: Коли ШІ розробляє свої секретні мови

У той час як 61% людей вже насторожено ставляться до ШІ, який розуміє, у лютому 2025 року Gibberlink набрав 15 мільйонів переглядів, показавши дещо радикально нове: двох ШІ, які перестають говорити англійською і спілкуються за допомогою високочастотних звуків на частоті 1875-4500 Гц, незрозумілих для людини. Це не наукова фантастика, а протокол FSK, який підвищує продуктивність на 80%, підриваючи статтю 13 Закону ЄС про ШІ і створюючи дворівневу непрозорість: незбагненні алгоритми, що координують свої дії на нерозбірливих мовах. Наука показує, що ми можемо вивчити машинні протоколи (наприклад, азбуку Морзе зі швидкістю 20-40 слів на хвилину), але ми стикаємося з непереборними біологічними обмеженнями: 126 біт/с у людини проти понад Мбіт/с у машини. З'являються три нові професії - аналітик протоколів ШІ, аудитор комунікацій ШІ, дизайнер інтерфейсів ШІ-людина - в той час як IBM, Google і Anthropic розробляють стандарти (ACP, A2A, MCP), щоб уникнути остаточного "чорного ящика". Рішення, прийняті сьогодні щодо протоколів зв'язку ШІ, визначатимуть траєкторію розвитку штучного інтелекту на десятиліття вперед.