Newsletter

Штучний інтелект в енергетиці: нові рішення для виробництва та дистрибуції

Siemens Energy: -30% простоїв. GE: 1 мільярд доларів заощаджено на рік. Iberdrola: -25% відходів у відновлюваній енергетиці. ШІ трансформує управління енергією: прогнози погоди для оптимізації використання сонячної та вітрової енергії, прогнозоване технічне обслуговування, розумні мережі, які передбачають проблеми. Але існує парадокс: центри обробки даних зі штучним інтелектом споживають сотні кіловат-годин за одну навчальну сесію. Яке рішення? Циклічність - ШІ керує відновлюваними джерелами енергії, які живлять системи ШІ.

Підсумуйте цю статтю за допомогою ШІ

Штучний інтелект змінює управління енергією завдяки оптимізації відновлюваних джерел енергії та "розумним" мережам. Алгоритми допомагають електроенергетичним компаніям:

  • Зменшення викидів CO2
  • Підвищення надійності відновлюваних джерел енергії
  • Прогнозування попиту
  • Запобігання перериванням
  • Оптимізація дистрибуції

Вплив

  1. Виробництво електроенергії:

Алгоритми прогнозування підвищують надійність відновлюваних джерел енергії, передбачаючи погодні умови для сонячної та вітрової енергетики. Прогнозоване технічне обслуговування зменшує час простою станції та операційні витрати.

  1. Споживання енергії:

Користувачі можуть переносити споживання на непікові години, зменшуючи витрати та навантаження на мережу. Системи розумного дому автоматично регулюють термостати, освітлення та електроприлади.

  1. Управління мережею

Сучасні цифрові технології революціонізують спосіб управління енергетичною інфраструктурою. Зокрема, штучнийінтелект виявляється безцінним інструментом для електророзподільчих компаній. Ці сучасні системи безперервно аналізують величезні обсяги даних з датчиків, розподілених по всій мережі, від ліній електропередач до трансформаторних підстанцій.

Завдяки складним алгоритмам машинного навчання з'явилася можливість виявляти потенційні проблеми ще до того, як вони спричинять перебої в обслуговуванні. Такий превентивний підхід, відомий як предиктивне обслуговування, дає чудові результати: кілька компаній у цьому секторі відчули різке зменшення кількості перебоїв у наданні послуг, що призвело до значного покращення якості обслуговування громадян та бізнесу.

Вплив цієї технологічної трансформації виходить за рамки простого зменшення кількості відключень. Здатність прогнозувати і запобігати проблемам дозволяє більш ефективно управляти ресурсами, краще планувати заходи і, в кінцевому підсумку, більш надійно і стабільно забезпечувати електроенергією всю громаду.

Приклади впливу:

  • Siemens Energy: -30% простоїв
  • General Electric: 1 мільярд доларів щорічної економії
  • Iberdrola: -25% втрат енергії у відновлюваній енергетиці

Перевірені програми:

  • Shell і BP: операційна оптимізація та скорочення викидів
  • Tesla: зберігання енергії та чисті рішення
  • Duke Energy та Національна мережа: модернізація електромереж

ШІ покращує управління енергоспоживанням, створюючи його:

  • Більш ефективні
  • Більш надійний
  • Більш стійкий
  • Дешевше.

Ці розробки підтримують перехід до більш сталої енергетичної системи за допомогою технологічних рішень, які вже застосовуються на місцях.

Висновки

Штучний інтелект революціонізує енергетичний сектор, пропонуючи інноваційні рішення для оптимізації виробництва, розподілу та споживання енергії. Однак сам ШІ має свій вплив на енергетику. Обчислювальні центри, необхідні для навчання та запуску моделей штучного інтелекту, потребують значних обсягів енергії: за деякими оцінками, на одне навчання складних моделей витрачається до кількох сотень кіловат-годин.

Щоб максимізувати чисту вигоду від ШІ в енергетичному секторі, компанії застосовують комплексний підхід. З одного боку, вони використовують більш ефективні архітектури та спеціалізоване обладнання. З іншого боку, живлячи обчислювальні центри відновлюваною енергією, створюючи замкнутий цикл, в якому ШІ допомагає краще управляти відновлюваними джерелами, які, в свою чергу, живлять системи ШІ.

Інновації в галузі обчислювальної ефективності та технологій охолодження центрів обробки даних, а також використання відновлюваних джерел енергії або, де це дозволено, атомної енергії, матимуть вирішальне значення для забезпечення того, щоб ШІ залишався стійким інструментом для енергетичного переходу.

Довгостроковий успіх цього підходу залежатиме від здатності збалансувати експлуатаційні переваги системи з її енергетичною стійкістю, що сприятиме створенню справді чистого та ефективного майбутнього. Пізніше я напишу більш детально на цю тему.

Ресурси для розвитку бізнесу

9 листопада 2025 року

Повний посібник з програмного забезпечення для бізнес-аналітики для МСП

60% італійських МСП визнають, що мають критичні прогалини в підготовці даних, 29% навіть не мають спеціальної цифри - в той час як італійський ринок бізнес-аналітики зросте з $36,79 млрд до $69,45 млрд до 2034 року (CAGR 8,56%). Проблема не в технології, а в підході: малі та середні підприємства тонуть у даних, розкиданих між таблицями CRM, ERP, Excel, не перетворюючи їх на рішення. Це стосується як тих, хто починає з нуля, так і тих, хто хоче оптимізувати. Критерії вибору, які мають значення: зручність використання без місяців навчання, масштабованість, яка зростає разом з вами, інтеграція з існуючими системами, повна сукупна вартість володіння (впровадження + навчання + обслуговування) порівняно з вартістю самої лише ліцензії. 4-крокова дорожня карта - вимірювані SMART-цілі (зменшити відтік на 15% за 6 місяців), чисте мапування джерел даних (сміття на вході = сміття на виході), навчання команди культурі даних, пілотний проект з безперервним циклом зворотного зв'язку. ШІ змінює все: від описової BI (що сталося) до доповненої аналітики, яка виявляє приховані закономірності, предиктивної, яка оцінює майбутній попит, прескриптивної, яка пропонує конкретні дії. Electe демократизує цю силу для МСП.
9 листопада 2025 року

Система охолодження Google DeepMind AI: як штучний інтелект революціонізує енергоефективність центрів обробки даних

Google DeepMind досягає -40% енергії на охолодження центру обробки даних (але лише -4% загального споживання, оскільки охолодження становить 10% від загального) - точність 99,6% з похибкою 0,4% на PUE 1.1 завдяки 5-рівневому глибокому навчанню, 50 вузлам, 19 вхідним змінним на 184 435 навчальних вибірках (дані за 2 роки). Підтверджено на 3 об'єктах: Сінгапур (перше розгортання у 2016 році), Емшавен, Рада Блаффс (інвестиції у розмірі $5 млрд). PUE флоту Google 1,09 проти середнього по галузі 1,56-1,58. Модель Predictive Control прогнозує температуру/тиск на наступну годину, одночасно керуючи ІТ-навантаженням, погодою, станом обладнання. Гарантована безпека: дворівнева верифікація, оператори завжди можуть відключити ШІ. Критичні обмеження: нульова незалежна перевірка з боку аудиторських фірм/національних лабораторій, для кожного дата-центру потрібна індивідуальна модель (8 років не комерціалізована). Впровадження займає 6-18 місяців і потребує мультидисциплінарної команди (наука про дані, ОВіК, управління об'єктами). Застосовується не лише в дата-центрах: промислові підприємства, лікарні, торгові центри, корпоративні офіси. 2024-2025: Перехід Google на пряме рідинне охолодження для TPU v5p, що вказує на практичні межі оптимізації ШІ.
9 листопада 2025 року

Чому математика - це складно (навіть якщо ви штучний інтелект)

Мовні моделі не вміють множити і запам'ятовувати результати так, як ми запам'ятовуємо число пі, але це не робить їх математиками. Проблема структурна: вони навчаються за статистичною схожістю, а не за алгоритмічним розумінням. Навіть нові "моделі мислення", такі як o1, не справляються з тривіальними завданнями: вони правильно рахують "r" у слові "полуниця" після декількох секунд обробки, але не можуть написати абзац, де друга буква кожного речення складає слово. Преміум-версія за 200 доларів на місяць витрачає чотири хвилини на те, що дитина робить миттєво. DeepSeek і Mistral у 2025 році все ще неправильно рахують літери. Яке рішення з'являється? Гібридний підхід - найрозумніші моделі з'ясували, коли потрібно викликати справжній калькулятор, а не намагатися обчислити самостійно. Зміна парадигми: ШІ не повинен знати, як робити все, а лише організувати правильні інструменти. Останній парадокс: GPT-4 може блискуче пояснити вам теорію меж, але неправильно виконує множення, які кишеньковий калькулятор завжди виконує правильно. Для навчання математики вони чудові - пояснюють з безмежним терпінням, адаптують приклади, розбивають складні міркування. Для точних розрахунків? Точно на калькулятор, а не на штучний інтелект.