Newsletter

Штучний інтелект в енергетиці: нові рішення для виробництва та дистрибуції

Siemens Energy: -30% простоїв. GE: 1 мільярд доларів заощаджено на рік. Iberdrola: -25% відходів у відновлюваній енергетиці. ШІ трансформує управління енергією: прогнози погоди для оптимізації використання сонячної та вітрової енергії, прогнозоване технічне обслуговування, розумні мережі, які передбачають проблеми. Але існує парадокс: центри обробки даних зі штучним інтелектом споживають сотні кіловат-годин за одну навчальну сесію. Яке рішення? Циклічність - ШІ керує відновлюваними джерелами енергії, які живлять системи ШІ.

Підсумуйте цю статтю за допомогою ШІ

Штучний інтелект змінює управління енергією завдяки оптимізації відновлюваних джерел енергії та "розумним" мережам. Алгоритми допомагають електроенергетичним компаніям:

  • Зменшення викидів CO2
  • Підвищення надійності відновлюваних джерел енергії
  • Прогнозування попиту
  • Запобігання перериванням
  • Оптимізація дистрибуції

Вплив

  1. Виробництво електроенергії:

Алгоритми прогнозування підвищують надійність відновлюваних джерел енергії, передбачаючи погодні умови для сонячної та вітрової енергетики. Прогнозоване технічне обслуговування зменшує час простою станції та операційні витрати.

  1. Споживання енергії:

Користувачі можуть переносити споживання на непікові години, зменшуючи витрати та навантаження на мережу. Системи розумного дому автоматично регулюють термостати, освітлення та електроприлади.

  1. Управління мережею

Сучасні цифрові технології революціонізують спосіб управління енергетичною інфраструктурою. Зокрема, штучнийінтелект виявляється безцінним інструментом для електророзподільчих компаній. Ці сучасні системи безперервно аналізують величезні обсяги даних з датчиків, розподілених по всій мережі, від ліній електропередач до трансформаторних підстанцій.

Завдяки складним алгоритмам машинного навчання з'явилася можливість виявляти потенційні проблеми ще до того, як вони спричинять перебої в обслуговуванні. Такий превентивний підхід, відомий як предиктивне обслуговування, дає чудові результати: кілька компаній у цьому секторі відчули різке зменшення кількості перебоїв у наданні послуг, що призвело до значного покращення якості обслуговування громадян та бізнесу.

Вплив цієї технологічної трансформації виходить за рамки простого зменшення кількості відключень. Здатність прогнозувати і запобігати проблемам дозволяє більш ефективно управляти ресурсами, краще планувати заходи і, в кінцевому підсумку, більш надійно і стабільно забезпечувати електроенергією всю громаду.

Приклади впливу:

  • Siemens Energy: -30% простоїв
  • General Electric: 1 мільярд доларів щорічної економії
  • Iberdrola: -25% втрат енергії у відновлюваній енергетиці

Перевірені програми:

  • Shell і BP: операційна оптимізація та скорочення викидів
  • Tesla: зберігання енергії та чисті рішення
  • Duke Energy та Національна мережа: модернізація електромереж

ШІ покращує управління енергоспоживанням, створюючи його:

  • Більш ефективні
  • Більш надійний
  • Більш стійкий
  • Дешевше.

Ці розробки підтримують перехід до більш сталої енергетичної системи за допомогою технологічних рішень, які вже застосовуються на місцях.

Висновки

Штучний інтелект революціонізує енергетичний сектор, пропонуючи інноваційні рішення для оптимізації виробництва, розподілу та споживання енергії. Однак сам ШІ має свій вплив на енергетику. Обчислювальні центри, необхідні для навчання та запуску моделей штучного інтелекту, потребують значних обсягів енергії: за деякими оцінками, на одне навчання складних моделей витрачається до кількох сотень кіловат-годин.

Щоб максимізувати чисту вигоду від ШІ в енергетичному секторі, компанії застосовують комплексний підхід. З одного боку, вони використовують більш ефективні архітектури та спеціалізоване обладнання. З іншого боку, живлячи обчислювальні центри відновлюваною енергією, створюючи замкнутий цикл, в якому ШІ допомагає краще управляти відновлюваними джерелами, які, в свою чергу, живлять системи ШІ.

Інновації в галузі обчислювальної ефективності та технологій охолодження центрів обробки даних, а також використання відновлюваних джерел енергії або, де це дозволено, атомної енергії, матимуть вирішальне значення для забезпечення того, щоб ШІ залишався стійким інструментом для енергетичного переходу.

Довгостроковий успіх цього підходу залежатиме від здатності збалансувати експлуатаційні переваги системи з її енергетичною стійкістю, що сприятиме створенню справді чистого та ефективного майбутнього. Пізніше я напишу більш детально на цю тему.

Ресурси для розвитку бізнесу

9 листопада 2025 року

Революція штучного інтелекту: фундаментальна трансформація реклами

71% споживачів очікують персоналізації, але 76% розчаровуються, коли вона йде не так - ласкаво просимо до парадоксу реклами зі штучним інтелектом, який генерує $740 млрд щорічно (2025). DCO (динамічна креативна оптимізація) забезпечує результати, які можна перевірити: +35% CTR, +50% конверсії, -30% CAC завдяки автоматичному тестуванню тисяч креативних варіацій. Приклад з практики роздрібної торгівлі одягом: 2 500 комбінацій (50 зображень × 10 заголовків × 5 закликів до дії) для кожного мікросегмента = +127% ROAS за 3 місяці. Але руйнівні структурні обмеження: проблема холодного старту займає 2-4 тижні + тисячі показів для оптимізації, 68% маркетологів не розуміють рішень ШІ, застарілість файлів cookie (Safari вже, Chrome 2024-2025) змушує переосмислити таргетинг. Дорожня карта на 6 місяців: фундамент з аудитом даних + конкретні KPI ("знизити CAC на 25% в сегменті X", а не "збільшити продажі"), пілотне A/B-тестування АІ на 10-20% бюджету проти ручного, масштабування на 60-80% з крос-канальним DCO. Напруженість щодо конфіденційності критична: 79% користувачів стурбовані збором даних, втома від реклами - 60% залучення після 5+ експозицій. Майбутнє без файлів cookie: контекстний таргетинг 2.0, семантичний аналіз у реальному часі, дані від третіх сторін через CDP, об'єднане навчання для персоналізації без індивідуального відстеження.
9 листопада 2025 року

Революція в галузі штучного інтелекту в компаніях середнього бізнесу: чому вони стають рушіями практичних інновацій

74% компаній зі списку Fortune 500 борються за отримання прибутку від ШІ і лише 1% мають "зрілі" впровадження - тоді як середній ринок (оборот 100 млн євро - 1 млрд євро) досягає конкретних результатів: 91% малих і середніх підприємств, що використовують ШІ, повідомляють про помітне збільшення обороту, середній показник рентабельності інвестицій - 3,7x, а найкращі показники - 10,3x. Ресурсний парадокс: великі компанії витрачають 12-18 місяців на "пілотний перфекціонізм" (технічно чудові проекти, але нульове масштабування), тоді як середній ринок впроваджує за 3-6 місяців: конкретна проблема→цільове рішення→результати→масштабування. Сара Чен (Meridian Manufacturing, $350 млн): "Кожне впровадження повинно було продемонструвати цінність протягом двох кварталів - обмеження, яке підштовхувало нас до практичних робочих додатків". Перепис населення США: лише 5,4% компаній використовують ШІ у виробництві, хоча 78% заявляють про "впровадження". Середній ринок віддає перевагу комплексним вертикальним рішенням, а не платформам для кастомізації, спеціалізованим партнерствам з постачальниками, а не масивним власним розробкам. Провідні сектори: фінтех/програмне забезпечення/банкінг, виробництво - 93% нових проектів минулого року. Типовий бюджет - 50-500 тис. євро на рік, орієнтований на конкретні рішення з високим рівнем рентабельності інвестицій. Універсальний урок: досконалість виконання перемагає обсяг ресурсів, гнучкість перемагає організаційну складність.