Newsletter

Машини, які вчаться (також) на наших помилках Ефект бумеранга: ми навчаємо ШІ наших помилок, а він повертає їх нам... примноженими!

ШІ успадковує наші упередження, а потім посилює їх. Ми бачимо упереджені результати - і підсилюємо їх. Цикл самопідживлення. Дослідження UCL: упередженість у розпізнаванні облич, що становила 4,7%, зросла до 11,3% після взаємодії людини і ШІ. У HR кожен цикл збільшує гендерну упередженість на 8-14%. Які хороші новини? Метод "алгоритмічного дзеркала", який показує менеджерам, як би виглядав їхній вибір, якби його зробив штучний інтелект, зменшує упередженість на 41%.

Підсумуйте цю статтю за допомогою ШІ

Деякі нещодавні дослідження висвітлили цікавий феномен: існує "двосторонній" зв'язок між упередженнями, присутніми в моделях штучного інтелекту, і упередженнями людського мислення.

Ця взаємодія створює механізм, який має тенденцію посилювати когнітивні викривлення в обох напрямках.

Це дослідження показує, що системи штучного інтелекту не лише успадковують людські упередження з навчальних даних, але й при впровадженні можуть посилювати їх, впливаючи на процеси прийняття рішень. Це створює цикл, який, якщо ним не керувати належним чином, ризикує поступово посилити початкові упередження.

Це явище особливо помітне у таких важливих секторах, як:

У цих сферах невеликі початкові упередження можуть посилюватися через повторні взаємодії між людьми-операторами та автоматизованими системами, поступово перетворюючись на значні відмінності в результатах.

Витоки упереджень

У людській думці

Людський розум природно використовує "мисленнєві ярлики", які можуть вносити систематичні помилки в наші судження. Теорія "подвійного мислення"розрізняє

  • Швидке та інтуїтивне мислення (схильне до стереотипів)
  • Повільне та рефлексивне мислення (здатне виправляти упередження)

Наприклад, у медицині лікарі схильні надавати занадто великої ваги початковим гіпотезам, нехтуючи протилежними доказами. Це явище, яке називається "упередженням підтвердження", відтворюється і посилюється системами штучного інтелекту, навченими на історичних діагностичних даних.

У моделях штучного інтелекту

Моделі машинного навчання увічнюють упередження переважно трьома шляхами:

  1. Незбалансовані дані про навчання, що відображають історичну нерівність
  2. Вибір характеристик, що включають захищені ознаки (такі як стать або етнічна приналежність)
  3. Петлі зворотного зв'язку, що виникають внаслідок взаємодії з уже спотвореними людськими рішеннями

Один дослідження UCL 2024 року показало, що системи розпізнавання облич, навчені на емоційних судженнях людей, успадкували 4,7-відсоткову тенденцію позначати обличчя як "сумні", а потім посилили цю тенденцію до 11,3 відсотка при подальшій взаємодії з користувачами.

Як вони підсилюють один одного

Аналіз даних рекрутингових платформ показує, що кожен цикл співпраці людини та алгоритму збільшує гендерну упередженість на 8-14% завдяки механізмам зворотного зв'язку, що взаємно підсилюють один одного.

Коли HR-фахівці отримують від ШІ списки кандидатів, на яких вже вплинули історичні упередження, їхня подальша взаємодія (наприклад, вибір питань для співбесіди або оцінювання результатів роботи) посилює упередженість моделі.

Мета-аналіз 47 досліджень, проведений у 2025 році, показав, що три раунди співпраці людини та АІ збільшили демографічні диспропорції в 1,7-2,3 рази в таких сферах, як охорона здоров'я, кредитування та освіта.

Стратегії вимірювання та пом'якшення упереджень

Кількісна оцінка за допомогою машинного навчання

Система вимірювання упереджень, запропонована Донгом та ін. (2024), дозволяє виявляти упередження без потреби в ярликах "абсолютної істини", аналізуючи розбіжності в моделях прийняття рішень між захищеними групами.

Когнітивні втручання

Методика "алгоритмічного дзеркала", розроблена дослідниками UCL, зменшила гендерну упередженість у рішеннях про просування по службі на 41%, показавши менеджерам, як би виглядав їхній історичний вибір, якби він був зроблений системою штучного інтелекту.

Особливо перспективними виявилися навчальні протоколи, які чергують допомогу з боку експерта та самостійне прийняття рішень, що дозволило знизити ефект перенесення упередження з 17% до 6% у клінічних діагностичних дослідженнях.

Наслідки для суспільства

Організації, які впроваджують системи штучного інтелекту без урахування взаємодії з людськими упередженнями, стикаються з підвищеними юридичними та операційними ризиками.

Аналіз справ про дискримінацію на робочому місці показує, що процеси найму за допомогою ШІ збільшують шанси позивачів на успіх на 28% порівняно з традиційними справами, які ведуть люди, оскільки сліди алгоритмічних рішень надають чіткіші докази неспівмірного впливу.

На шляху до штучного інтелекту, який поважає свободу та ефективність

Взаємозв'язок між алгоритмічними викривленнями та обмеженням свободи вибору вимагає від нас переосмислення технологічного розвитку з точки зору індивідуальної відповідальності та забезпечення ефективності ринку. Вкрай важливо, щоб ШІ став інструментом розширення можливостей, а не їх обмеження.

Перспективні напрямки включають:

  • Ринкові рішення, які стимулюють розробку неупереджених алгоритмів
  • Більша прозорість в автоматизованих процесах прийняття рішень
  • Дерегуляція сприяє конкуренції між різними технологічними рішеннями

Лише завдяки відповідальному саморегулюванню галузі в поєднанні зі свободою вибору для користувачів ми можемо гарантувати, що технологічні інновації і надалі залишатимуться рушієм процвітання та можливостей для всіх тих, хто готовий випробувати свої навички.

Ресурси для розвитку бізнесу

9 листопада 2025 року

Революція штучного інтелекту: фундаментальна трансформація реклами

71% споживачів очікують персоналізації, але 76% розчаровуються, коли вона йде не так - ласкаво просимо до парадоксу реклами зі штучним інтелектом, який генерує $740 млрд щорічно (2025). DCO (динамічна креативна оптимізація) забезпечує результати, які можна перевірити: +35% CTR, +50% конверсії, -30% CAC завдяки автоматичному тестуванню тисяч креативних варіацій. Приклад з практики роздрібної торгівлі одягом: 2 500 комбінацій (50 зображень × 10 заголовків × 5 закликів до дії) для кожного мікросегмента = +127% ROAS за 3 місяці. Але руйнівні структурні обмеження: проблема холодного старту займає 2-4 тижні + тисячі показів для оптимізації, 68% маркетологів не розуміють рішень ШІ, застарілість файлів cookie (Safari вже, Chrome 2024-2025) змушує переосмислити таргетинг. Дорожня карта на 6 місяців: фундамент з аудитом даних + конкретні KPI ("знизити CAC на 25% в сегменті X", а не "збільшити продажі"), пілотне A/B-тестування АІ на 10-20% бюджету проти ручного, масштабування на 60-80% з крос-канальним DCO. Напруженість щодо конфіденційності критична: 79% користувачів стурбовані збором даних, втома від реклами - 60% залучення після 5+ експозицій. Майбутнє без файлів cookie: контекстний таргетинг 2.0, семантичний аналіз у реальному часі, дані від третіх сторін через CDP, об'єднане навчання для персоналізації без індивідуального відстеження.
9 листопада 2025 року

Революція в галузі штучного інтелекту в компаніях середнього бізнесу: чому вони стають рушіями практичних інновацій

74% компаній зі списку Fortune 500 борються за отримання прибутку від ШІ і лише 1% мають "зрілі" впровадження - тоді як середній ринок (оборот 100 млн євро - 1 млрд євро) досягає конкретних результатів: 91% малих і середніх підприємств, що використовують ШІ, повідомляють про помітне збільшення обороту, середній показник рентабельності інвестицій - 3,7x, а найкращі показники - 10,3x. Ресурсний парадокс: великі компанії витрачають 12-18 місяців на "пілотний перфекціонізм" (технічно чудові проекти, але нульове масштабування), тоді як середній ринок впроваджує за 3-6 місяців: конкретна проблема→цільове рішення→результати→масштабування. Сара Чен (Meridian Manufacturing, $350 млн): "Кожне впровадження повинно було продемонструвати цінність протягом двох кварталів - обмеження, яке підштовхувало нас до практичних робочих додатків". Перепис населення США: лише 5,4% компаній використовують ШІ у виробництві, хоча 78% заявляють про "впровадження". Середній ринок віддає перевагу комплексним вертикальним рішенням, а не платформам для кастомізації, спеціалізованим партнерствам з постачальниками, а не масивним власним розробкам. Провідні сектори: фінтех/програмне забезпечення/банкінг, виробництво - 93% нових проектів минулого року. Типовий бюджет - 50-500 тис. євро на рік, орієнтований на конкретні рішення з високим рівнем рентабельності інвестицій. Універсальний урок: досконалість виконання перемагає обсяг ресурсів, гнучкість перемагає організаційну складність.